Micro-randomized trial (MRT) is a sequential randomized experimental design to empirically evaluate the effectiveness of mobile health (mHealth) intervention components that may be delivered at hundreds or thousands of decision points. The MRT context has motivated a new class of causal estimands, termed "causal excursion effects", for which inference can be made by a weighted, centered least squares approach (Boruvka et al., 2017). Existing methods assume between-subject independence and non-interference. Deviations from these assumptions often occur which, if unaccounted for, may result in bias and overconfident variance estimates. In this paper, causal excursion effects are considered under potential cluster-level correlation and interference and when the treatment effect of interest depends on cluster-level moderators. The utility of our proposed methods is shown by analyzing data from a multi-institution cohort of first year medical residents in the United States. The approach paves the way for construction of mHealth interventions that account for observed social network information.


翻译:微随机试验(MRT)是一种连续随机实验设计,以经验性地评价在数百或数千个决定点上可能提供的移动保健(MHH)干预部分的有效性;MRT环境引发了一种新的因果估计效应,称为“因果解剖效应”,可以通过加权、中点最小方方的方法推断出(Boruvka等人,2017年);现有方法假定主体独立和不干涉之间;这些假设经常出现偏离,如果下落不明,可能导致偏差和过度不自信的差异估计;在本文件中,因果解剖效应在潜在的集群层面相关性和干扰下加以考虑,当利息的处理效果取决于集群级的主持人时;我们拟议方法的效用是通过分析来自美国第一年医疗居民多机构组的数据来显示的;这一方法为构建考虑到所观察到的社会网络信息的保健干预措施铺平了道路。

0
下载
关闭预览

相关内容

专知会员服务
27+阅读 · 2021年2月2日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员