We address the problem of finding sets of integers of a given size with maximum number of pairs summing to powers of $2$. By fixing particular pairs this problem reduces to finding a labeling of the vertices of a given graph with pairwise distinct integers such that the endpoint labels for each edge sum to a power of $2$. We propose an efficient algorithm for this problem, which we use to determine the maximum size of graphs of order $n$ that admit such a labeling for all $n\leq 18$. We also identify the minimal forbidden subgraphs of order $\leq 11$, whose presence prevents graphs from having such a labeling.
翻译:我们解决了找到一定大小的整数组,最大数量配对比例为$2的整数的问题。 通过确定特定的对子,这一问题会降低到找到一个标签,将特定图表的顶部标上带有双向不同的整数,这样每个边缘和顶端的端点标签的功率就达到$2。我们为此提出一个有效的算法,我们用这个算法来确定单数图的最大尺寸$n美元,该算法承认所有$n\leq 18$的这种标签。我们还确定了最起码的禁止的单数$\leq 11$,其存在使得图表无法使用这样的标签。</s>