Machine learning (ML) has made incredible impacts and transformations in a wide range of vehicular applications. As the use of ML in Internet of Vehicles (IoV) continues to advance, adversarial threats and their impact have become an important subject of research worth exploring. In this paper, we focus on Sybil-based adversarial threats against a deep reinforcement learning (DRL)-assisted IoV framework and more specifically, DRL-based dynamic service placement in IoV. We carry out an experimental study with real vehicle trajectories to analyze the impact on service delay and resource congestion under different attack scenarios for the DRL-based dynamic service placement application. We further investigate the impact of the proportion of Sybil-attacked vehicles in the network. The results demonstrate that the performance is significantly affected by Sybil-based data poisoning attacks when compared to adversary-free healthy network scenario.
翻译:机器学习(ML)在广泛的车辆应用中产生了难以置信的影响和转变。随着车辆互联网(IoV)对ML的使用继续推进,对抗性威胁及其影响已成为值得探讨的一个重要研究课题。在本文中,我们侧重于基于Sybil的对深强化学习(DRL)辅助IoV框架的对抗性威胁,更具体地说,基于DRL的动态服务在IoV中的位置。我们与真正的车辆轨迹进行了一项实验性研究,以分析基于DRL的动态服务安置应用的不同攻击情景对服务延迟和资源拥堵的影响。我们进一步调查Sybil被攻击的车辆在网络中的比例。结果显示,与无敌健康网络情景相比,Sybil的数据中毒袭击对业绩产生了重大影响。