The rapid advancements of Internet of Things (IoT) and artificial intelligence (AI) have catalyzed the development of adaptive traffic signal control systems (ATCS) for smart cities. In particular, deep reinforcement learning (DRL) methods produce the state-of-the-art performance and have great potentials for practical applications. In the existing DRL-based ATCS, the controlled signals collect traffic state information from nearby vehicles, and then optimal actions (e.g., switching phases) can be determined based on the collected information. The DRL models fully "trust" that vehicles are sending the true information to the signals, making the ATCS vulnerable to adversarial attacks with falsified information. In view of this, this paper first time formulates a novel task in which a group of vehicles can cooperatively send falsified information to "cheat" DRL-based ATCS in order to save their total travel time. To solve the proposed task, we develop CollusionVeh, a generic and effective vehicle-colluding framework composed of a road situation encoder, a vehicle interpreter, and a communication mechanism. We employ our method to attack established DRL-based ATCS and demonstrate that the total travel time for the colluding vehicles can be significantly reduced with a reasonable number of learning episodes, and the colluding effect will decrease if the number of colluding vehicles increases. Additionally, insights and suggestions for the real-world deployment of DRL-based ATCS are provided. The research outcomes could help improve the reliability and robustness of the ATCS and better protect the smart mobility systems.


翻译:智能城市的DRL模型充分“信任”地显示,车辆正在向信号发送真实的信息,使ATCS容易受到对抗性攻击,为此,本文首次提出了一个新的任务,即一组车辆可以合作向“热”DRL的ATCS发送伪造的信息,以节省其全部旅行时间。为了解决拟议的任务,我们开发了ColusionVeh,一个基于通用和有效的车辆统括框架,由公路状况编码器、车辆解释器和通信机制组成的帮助帮助记录器帮助保护了ACTCS的准确性,以及一个通信机制。我们用这个方法可以大大降低ACTS和ACTCS的准确性,这样,我们就可以用真实的方法对攻击机动性LL的结果进行学习。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员