In this paper, we propose ISDE (Independence Structure Density Estimation), an algorithm designed to estimate a multivariate density under Kullback-Leibler loss and the Independence Structure (IS) model. IS tackles the curse of dimensionality by separating features into independent groups. We explain the construction of ISDE and present some experiments to show its performance on synthetic and real-world data. Performance is measured quantitatively by comparing empirical $\log$-likelihood with other density estimation methods and qualitatively by analyzing outputted partitions of variables. We also provide information about complexity and running time.
翻译:在本文中,我们提出ISDE(独立结构密度估计),这是一种算法,旨在根据Kullback-Leibel损失和独立结构模型估计多变量密度。IS通过将特征分为独立组处理维度的诅咒。我们解释了ISDE的构建,并提出了一些实验,以显示其在合成和现实世界数据方面的性能。通过将实证的美元相似值与其他密度估计方法进行比较,并通过分析变量输出的分区进行质量衡量绩效。我们还提供了关于复杂性和运行时间的信息。