Recognizing unseen relations with no training instances is a challenging task in the real world. In this paper, we propose a prompt-based model with semantic knowledge augmentation (ZS-SKA) to recognize unseen relations under the zero-shot setting. We generate augmented instances with unseen relations from instances with seen relations following a new word-level sentence translation rule. We design prompts based on an external knowledge graph to integrate semantic knowledge information learned from seen relations. Instead of using the actual label sets in the prompt template, we construct weighted virtual label words. By generating the representations of both seen and unseen relations with augmented instances and prompts through prototypical networks, distance is calculated to predict unseen relations. Extensive experiments conducted on three public datasets show that ZS-SKA outperforms state-of-the-art methods under the zero-shot scenarios. Our experimental results also demonstrate the effectiveness and robustness of ZS-SKA.
翻译:在现实世界中,承认没有培训实例的无形关系是一项艰巨的任务。在本文中,我们提出一个具有语义知识增强(ZS-SKA)的快速模型,以识别零光环境下的无形关系。我们从采用新的字级句翻译规则的可见关系中产生更多与隐形关系的关系。我们根据外部知识图设计快速反应,以整合从所见关系中获取的语义知识信息。我们没有在快速模板中使用实际标签,而是构建了加权虚拟标签词。通过通过模拟网络增加实例和速率生成可见和不可见关系,计算距离以预测隐形关系。对三个公共数据集进行的广泛实验显示,ZS-SKA在零光谱情景下超越了最新的方法。我们的实验结果还展示了ZS-SKA的有效性和稳健性。