This work presents a reinforcement learning-based switching control mechanism to autonomously move a ferromagnetic object (representing a milliscale robot) around obstacles within a constrained environment in the presence of disturbances. This mechanism can be used to navigate objects (e.g., capsule endoscopy, swarms of drug particles) through complex environments when active control is a necessity but where direct manipulation can be hazardous. The proposed control scheme consists of a switching control architecture implemented by two sub-controllers. The first sub-controller is designed to employs the robot's inverse kinematic solutions to do an environment search of the to-be-carried ferromagnetic particle while being robust to disturbances. The second sub-controller uses a customized rainbow algorithm to control a robotic arm, i.e., the UR5 robot, to carry a ferromagnetic particle to a desired position through a constrained environment. For the customized Rainbow algorithm, Quantile Huber loss from the Implicit Quantile Networks (IQN) algorithm and ResNet are employed. The proposed controller is first trained and tested in a real-time physics simulation engine (PyBullet). Afterward, the trained controller is transferred to a UR5 robot to remotely transport a ferromagnetic particle in a real-world scenario to demonstrate the applicability of the proposed approach. The experimental results show an average success rate of 98.86\% calculated over 30 episodes for randomly generated trajectories.
翻译:这项工作展示了一个基于强化学习的切换控制机制, 以自动移动在受限制环境中的屏障周围的铁磁物体( 代表一个毫升的机器人) 。 这个机制可用于导航物体( 如胶囊内镜检查、 药物粒子群), 在需要主动控制但直接操作可能危险的情况下, 通过复杂的环境导航。 拟议的控制方案包括由两个子控制器实施的转换控制结构。 第一个子控制器旨在使用机器人的反动运动解决方案, 在扰动的环境下对待随身铁磁粒进行环境搜索。 第二个子控制器可以使用定制的彩虹算法来控制机器人臂, 即UR5机器人, 将一个铁磁粒通过受限制的环境传送到一个理想位置。 对于定制的彩虹算法, QUattil 网络( IQN) 算法和 ResNet 将使用。 拟议的控制器首先在实时磁铁磁铁磁粒应用性应用性分析模型中经过训练和测试, 将一个经过实际测试的磁性磁力模型模拟模型转换到一个实际的磁性轨道模拟模型模拟。