The problem of establishing out-of-sample bounds for the values of an unkonwn ground-truth function is considered. Kernels and their associated Hilbert spaces are the main formalism employed herein along with an observational model where outputs are corrupted by bounded measurement noise. The noise can originate from any compactly supported distribution and no independence assumptions are made on the available data. In this setting, we show how computing tight, finite-sample uncertainty bounds amounts to solving parametric quadratically constrained linear programs. Next, properties of our approach are established and its relationship with another methods is studied. Numerical experiments are presented to exemplify how the theory can be applied in a number of scenarios, and to contrast it with other closed-form alternatives.
翻译:考虑为非konwn的地面真相函数的值建立外标界限的问题。 Kernels 及其关联的 Hilbert 空间是此处使用的主要形式主义,同时使用一个观测模型,其输出因受捆绑的测量噪音而腐蚀。噪音可能来自任何靠紧凑支持的分布,而且没有根据现有数据作出独立假设。在这个环境中,我们展示了计算紧凑、有限和抽样的不确定性界限是如何解决参数受限的线性程序。接下来,确定了我们方法的特性,并研究了它与其他方法的关系。提出了数字实验,以示范该理论如何应用于若干情景,并将它与其他封闭式的替代方法加以对比。