Count time series are widely encountered in practice. As with continuous valued data, many count series have seasonal properties. This paper uses a recent advance in stationary count time series to develop a general seasonal count time series modeling paradigm. The model permits any marginal distribution for the series and the most flexible autocorrelations possible, including those with negative dependence. Likelihood methods of inference can be conducted and covariates can be easily accommodated. The paper first develops the modeling methods, which entail a discrete transformation of a Gaussian process having seasonal dynamics. Properties of this model class are then established and particle filtering likelihood methods of parameter estimation are developed. A simulation study demonstrating the efficacy of the methods is presented and an application to the number of rainy days in successive weeks in Seattle, Washington is given.


翻译:与连续估价数据一样,许多计数序列具有季节性特性。本文使用最新的固定计时时间序列先期来开发一个一般的季节计时时间序列模型模式。模型允许该序列的任何边际分布和可能最灵活的自动关系,包括负依赖关系。可以进行可能的推论方法,并很容易地采用共变法。本文首先开发了模型方法,这需要不同转换具有季节性动态的高斯进程。然后确定了这一模型类的属性,并开发了粒子过滤可能的参数估计方法。提供了模拟研究,展示了这些方法的功效,并应用了西雅图连续几周的降雨天数。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年4月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2022年1月22日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年4月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员