In this letter, we propose a model parameter identification method via a hyperparameter optimization scheme (MI-HPO). Our method adopts an efficient explore-exploit strategy to identify the parameters of dynamic models in a data-driven optimization manner. We utilize our method for model parameter identification of the AV-21, a full-scaled autonomous race vehicle. We then incorporate the optimized parameters for the design of model-based planning and control systems of our platform. In experiments, MI-HPO exhibits more than 13 times faster convergence than traditional parameter identification methods. Furthermore, the parametric models learned via MI-HPO demonstrate good fitness to the given datasets and show generalization ability in unseen dynamic scenarios. We further conduct extensive field tests to validate our model-based system, demonstrating stable obstacle avoidance and high-speed driving up to 217 km/h at the Indianapolis Motor Speedway and Las Vegas Motor Speedway. The source code for our work and videos of the tests are available at https://github.com/hynkis/MI-HPO.
翻译:在这封信中,我们提出了一种通过超参数优化的模型参数识别方法(MI-HPO)。我们的方法采用一种有效的探索-exploit策略,以数据驱动方式识别动态模型的参数。我们利用我们的方法对AV-21进行模型参数识别,这是一种全尺寸的自主赛车。然后,我们结合优化后的参数设计了基于模型的规划和控制系统。在实验中,MI-HPO的收敛速度比传统的参数识别方法快13倍以上。此外,通过MI-HPO学习的参数模型在给定的数据集中表现出良好的匹配度,并显示出在未见过的动态场景中的泛化能力。我们进一步进行了广泛的现场测试,验证了我们基于模型的系统,展示了在印第安纳波利斯摩托速度公路和拉斯维加斯摩托速度公路上稳定的避障和高速驾驶的能力,最高速度可达217公里/小时。我们的工作源代码和测试视频可在https://github.com/hynkis/MI-HPO获取。