In this letter, we propose a model parameter identification method via a hyperparameter optimization scheme (MI-HPO). Our method adopts an efficient explore-exploit strategy to identify the parameters of dynamic models in a data-driven optimization manner. We utilize our method for model parameter identification of the AV-21, a full-scaled autonomous race vehicle. We then incorporate the optimized parameters for the design of model-based planning and control systems of our platform. In experiments, MI-HPO exhibits more than 13 times faster convergence than traditional parameter identification methods. Furthermore, the parametric models learned via MI-HPO demonstrate good fitness to the given datasets and show generalization ability in unseen dynamic scenarios. We further conduct extensive field tests to validate our model-based system, demonstrating stable obstacle avoidance and high-speed driving up to 217 km/h at the Indianapolis Motor Speedway and Las Vegas Motor Speedway. The source code for our work and videos of the tests are available at https://github.com/hynkis/MI-HPO.


翻译:在这封信中,我们提出了一种通过超参数优化的模型参数识别方法(MI-HPO)。我们的方法采用一种有效的探索-exploit策略,以数据驱动方式识别动态模型的参数。我们利用我们的方法对AV-21进行模型参数识别,这是一种全尺寸的自主赛车。然后,我们结合优化后的参数设计了基于模型的规划和控制系统。在实验中,MI-HPO的收敛速度比传统的参数识别方法快13倍以上。此外,通过MI-HPO学习的参数模型在给定的数据集中表现出良好的匹配度,并显示出在未见过的动态场景中的泛化能力。我们进一步进行了广泛的现场测试,验证了我们基于模型的系统,展示了在印第安纳波利斯摩托速度公路和拉斯维加斯摩托速度公路上稳定的避障和高速驾驶的能力,最高速度可达217公里/小时。我们的工作源代码和测试视频可在https://github.com/hynkis/MI-HPO获取。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
【ECCV2022】UniNet:具有卷积、Transformer和MLP的统一架构搜索
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
94+阅读 · 2021年8月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ICML2019《元学习》教程与必读论文列表
专知
42+阅读 · 2019年6月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
【ECCV2022】UniNet:具有卷积、Transformer和MLP的统一架构搜索
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
94+阅读 · 2021年8月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
ICML2019《元学习》教程与必读论文列表
专知
42+阅读 · 2019年6月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员