All discretized numerical models contain modelling errors - this reality is amplified when reduced-order models are used. The ability to accurately approximate modelling errors informs statistics on model confidence and improves quantitative results from frameworks using numerical models in prediction, tomography, and signal processing. Further to this, the compensation of highly nonlinear and non-Gaussian modelling errors, arising in many ill-conditioned systems aiming to capture complex physics, is a historically difficult task. In this work, we address this challenge by proposing a neural network approach capable of accurately approximating and compensating for such modelling errors in augmented direct and inverse problems. The viability of the approach is demonstrated using simulated and experimental data arising from differing physical direct and inverse problems.


翻译:所有独立的数字模型都含有模型错误 -- -- 在使用减少顺序模型时,这一现实就会得到放大。准确估计模型错误的能力为模型信心统计数据提供了依据,并通过在预测、断层摄影和信号处理中使用数字模型的框架改进了定量结果。此外,在许多旨在捕捉复杂物理学的不完善系统中出现的高度非线性和非加利性建模错误的补偿是一项历史性的艰巨任务。在这项工作中,我们提出一种神经网络方法,能够准确接近和弥补这种建模错误,从而增加直接和反的问题,从而应对这一挑战。这一方法的可行性是通过由不同的物理直接和反面问题产生的模拟和实验数据加以证明的。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
3+阅读 · 2019年6月5日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
3+阅读 · 2019年6月5日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
3+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员