Given a square matrix $A$ and a polynomial $p$, the Crouzeix ratio is the norm of the polynomial on the field of values of $A$ divided by the 2-norm of the matrix $p(A)$. Crouzeix's conjecture states that the globally minimal value of the Crouzeix ratio is 0.5, regardless of the matrix order and polynomial degree, and it is known that 1 is a frequently occurring locally minimal value. Making use of a heavy-tailed distribution to initialize our optimization computations, we demonstrate for the first time that the Crouzeix ratio has many other locally minimal values between 0.5 and 1. Besides showing that the same function values are repeatedly obtained for many different starting points, we also verify that an approximate nonsmooth stationarity condition holds at computed candidate local minimizers. We also find that the same locally minimal values are often obtained both when optimizing over real matrices and polynomials, and over complex matrices and polynomials. We argue that minimization of the Crouzeix ratio makes a very interesting nonsmooth optimization case study, illustrating among other things how effective the BFGS method is for nonsmooth, nonconvex optimization. Our method for verifying approximate nonsmooth stationarity is based on what may be a novel approach to finding approximate subgradients of max functions on an interval. Our extensive computations strongly support Crouzeix's conjecture: in all cases, we find that the smallest locally minimal value is 0.5.


翻译:根据一个平方基质 $A$和多元基质 $P$, Crouzeix 比率是美元地区多元值的规范。 Crouzeix 的推测表明,Crouzix 比率的全球最低值为0.5, 不论矩阵顺序和多级, 已知 1 是经常发生的地方最低值。 使用一个超速分布来启动我们的优化计算, 我们第一次证明, Crouzeix 比率在0. 5 和 1. 之间有许多其他本地最低值。 Crouzeix 比率除了显示许多不同起始点反复获得相同的函数值之外, 我们还证实, Crouzeix 比率的全球最低值约为0. 0. 0.5, 不论矩阵顺序和多元度, 并且已知, 1 本地最低值通常是在优化真实基质和多元基值上实现最起码值时获得的。 我们指出, Crouzix 比率的最小值比值在0.5和本地最低值之间, 一个非常最小的数值在不透度的基点上, 我们的精确的计算方法在不透度上,

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
141+阅读 · 2021年3月17日
【ICLR2021】彩色化变换器,Colorization Transformer
专知会员服务
9+阅读 · 2021年2月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
已删除
将门创投
6+阅读 · 2017年11月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年7月19日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
141+阅读 · 2021年3月17日
【ICLR2021】彩色化变换器,Colorization Transformer
专知会员服务
9+阅读 · 2021年2月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
已删除
将门创投
6+阅读 · 2017年11月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员