Due to the domain discrepancy in visual domain adaptation, the performance of source model degrades when bumping into the high data density near decision boundary in target domain. A common solution is to minimize the Shannon Entropy to push the decision boundary away from the high density area. However, entropy minimization also leads to severe reduction of prediction diversity, and unfortunately brings harm to the domain adaptation. In this paper, we investigate the prediction discriminability and diversity by studying the structure of the classification output matrix of a randomly selected data batch. We find by theoretical analysis that the prediction discriminability and diversity could be separately measured by the Frobenius-norm and rank of the batch output matrix. The nuclear-norm is an upperbound of the former, and a convex approximation of the latter. Accordingly, we propose Batch Nuclear-norm Maximization and Minimization, which performs nuclear-norm maximization on the target output matrix to enhance the target prediction ability, and nuclear-norm minimization on the source batch output matrix to increase applicability of the source domain knowledge. We further approximate the nuclear-norm by L_{1,2}-norm, and design multi-batch optimization for stable solution on large number of categories. The fast approximation method achieves O(n^2) computational complexity and better convergence property. Experiments show that our method could boost the adaptation accuracy and robustness under three typical domain adaptation scenarios. The code is available at https://github.com/cuishuhao/BNM.


翻译:由于可视域适应的域差异,源模型的性能在目标域内决定边界附近碰到高数据密度时会下降。一个共同的解决办法是将香农恩特罗比最小化,将决定边界推离高密度区域。然而,最小化还会导致预测多样性严重减少,并不幸对域适应造成伤害。在本文件中,我们通过研究随机选定的一组数据分类输出矩阵的结构,调查预测可差异性和多样性。我们通过理论分析发现,预测可差异性和多样性可以由Frobenius-norm和批次产出矩阵的等级分别测量。核规范是前一个高端,而后一个螺旋近端。因此,我们建议Batch核规范最大化和最小化,对目标产出矩阵进行核规范最大化,以提高目标预测能力,对源产出矩阵进行核规范最小化,以提高源域知识的可适用性。我们进一步以L%1/norub-normality 和Onoralnial climal 方法下,可更稳定地优化的模型,在快速化方法下,可改进。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年3月21日
Arxiv
0+阅读 · 2021年9月18日
Arxiv
4+阅读 · 2021年7月1日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年3月21日
Top
微信扫码咨询专知VIP会员