Increasing numbers of patients with disabilities or elderly people with mobility issues often suffer from a pressure ulcer. The affected areas need regular checks, but they have a difficulty in accessing a hospital. Some remote diagnosis systems are being used for them, but there are limitations in checking a patient's status regularly. In this paper, we present a remote medical assistant that can help pressure ulcer management with image processing techniques. The proposed system includes a mobile application with a deep learning model for wound segmentation and analysis. As there are not enough data to train the deep learning model, we make use of a pretrained model from a relevant domain and data augmentation that is appropriate for this task. First of all, an image preprocessing method using bilinear interpolation is used to resize images and normalize the images. Second, for data augmentation, we use rotation, reflection, and a watershed algorithm. Third, we use a pretrained deep learning model generated from skin wound images similar to pressure ulcer images. Finally, we added an attention module that can provide hints on the pressure ulcer image features. The resulting model provides an accuracy of 99.0%, an intersection over union (IoU) of 99.99%, and a dice similarity coefficient (DSC) of 93.4% for pressure ulcer segmentation, which is better than existing results.
翻译:越来越多的残疾病人或行动不便老年人往往患有高压溃疡。 受影响的地区需要定期检查, 但他们很难进入医院。 一些远程诊断系统正在对他们使用, 但在检查病人状况方面有限制。 在本文中, 我们提出一个远程医疗助理, 帮助用图像处理技术管理压力溃疡。 提议的系统包括一个移动应用程序, 其中包含一个深度学习模式, 用于治疗伤口的分解和分析。 由于没有足够的数据来训练深层学习模式, 我们从适合这项工作的相关领域和数据增强中, 使用预先训练的模型。 首先, 使用双线内插的图像预处理方法来调整图像大小和图像的正常化。 其次, 数据增强, 我们使用旋转、 思考和分水岭算法。 第三, 我们使用一个由皮肤创伤图像产生的、 类似于压力溃疡图像的深层学习模型。 最后, 我们添加了一个关注模块, 能够提供压力溃疡图像特征的提示。 由此产生的模型提供了99 % 的准确度, 使用双线内置图像的图像预置处理方法, 。 与99 的调调调调调( ) (IC) 和调调调调调调调调调调调调调调调调调调调调调调调调调调调制调制调调调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制调制) 。