We introduce determinantal sieving, a new, remarkably powerful tool in the toolbox of algebraic FPT algorithms. Given a polynomial $P(X)$ on a set of variables $X=\{x_1,\ldots,x_n\}$ and a linear matroid $M=(X,\mathcal{I})$ of rank $k$, both over a field $\mathbb{F}$ of characteristic 2, in $2^k$ evaluations we can sieve for those terms in the monomial expansion of $P$ which are multilinear and whose support is a basis for $M$. Alternatively, using $2^k$ evaluations of $P$ we can sieve for those monomials whose odd support spans $M$. Applying this framework, we improve on a range of algebraic FPT algorithms, such as: 1. Solving $q$-Matroid Intersection in time $O^*(2^{(q-2)k})$ and $q$-Matroid Parity in time $O^*(2^{qk})$, improving on $O^*(4^{qk})$ over general fields (Brand and Pratt, ICALP 2021) 2. Long $(s,t)$-Path in $O^*(1.66^k)$ time, improving on $O^*(2^k)$, and Rank $k$ $(S,T)$-Linkage in so-called frameworks in $O^*(2^k)$ time, improving on $O^*(2^{|S|+O(k^2 \log(k+|\mathbb{F}|))})$ over general fields (Fomin et al., SODA 2023). 3. Many instances of the Diverse X paradigm, finding a collection of $r$ solutions to a problem with a minimum mutual distance of $d$ in time $O^*(2^{r(r-1)d/2})$, improving solutions for $k$-Distinct Branchings from time $2^{O(k \log k)}$ to $O^*(2^k)$ (Bang-Jensen et al., ESA 2021), and for Diverse Perfect Matchings from $O^*(2^{2^{O(rd)}})$ to $O^*(2^{r^2d/2})$ (Fomin et al., STACS 2021). Here, all matroids are assumed to be represented over fields of characteristic 2. Over general fields, we achieve similar results at the cost of using exponential space by working over the exterior algebra. For a class of arithmetic circuits we call strongly monotone, this is even achieved without any loss of running time. However, the odd support sieving result appears to be specific to working over characteristic 2.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FPT:International Conference on Field-Programmable Technology。 Explanation:现场可编程技术国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/fpt/
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
150+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 10月2日
Arxiv
0+阅读 · 10月2日
Arxiv
0+阅读 · 8月12日
Arxiv
0+阅读 · 4月4日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
32+阅读 · 2022年5月23日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
150+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
Arxiv
0+阅读 · 10月2日
Arxiv
0+阅读 · 10月2日
Arxiv
0+阅读 · 8月12日
Arxiv
0+阅读 · 4月4日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
32+阅读 · 2022年5月23日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年5月13日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员