In this paper, we propose a novel hybrid deep learning architecture that synergistically combines Graph Neural Networks (GNNs), Recurrent Neural Networks (RNNs), and multi-head attention mechanisms to significantly enhance cy- bersecurity intrusion detection capabilities. By leveraging the comprehensive UNSW-NB15 dataset containing diverse network traffic patterns, our approach effectively captures both spatial dependencies through graph structural relationships and tem- poral dynamics through sequential analysis of network events. The integrated attention mechanism provides dual benefits of improved model interpretability and enhanced feature selection, enabling cybersecurity analysts to focus computational resources on high-impact security events - a critical requirement in modern real-time intrusion detection systems. Our extensive experimental evaluation demonstrates that the proposed hybrid model achieves superior performance compared to traditional machine learning approaches and standalone deep learning models across multiple evaluation metrics, including accuracy, precision, recall, and F1-score. The model achieves particularly strong performance in detecting sophisticated attack patterns such as Advanced Persistent Threats (APTs), Distributed Denial of Service (DDoS) attacks, and zero-day exploits, making it a promising solution for next-generation cybersecurity applications in complex network environments.
 翻译:暂无翻译