We consider the lower bounds of differentially private empirical risk minimization (DP-ERM) for convex functions in constrained/unconstrained cases with respect to the general $\ell_p$ norm beyond the $\ell_2$ norm considered by most of the previous works. We provide a simple black-box reduction approach which can generalize lower bounds in constrained case to unconstrained case. For $(\epsilon,\delta)$-DP, we achieve $\Omega(\frac{\sqrt{d \log(1/\delta)}}{\epsilon n})$ lower bounds for both constrained and unconstrained cases and any $\ell_p$ geometry where $p\geq 1$ by introducing a novel biased mean property for fingerprinting codes, where $n$ is the size of the data-set and $d$ is the dimension.
翻译:我们认为,在限制/不受限制的案例中,对限制/不受限制的普通案件而言,对限制/不受限制的普通案件而言,对限制/不受限制的私人风险最小化作用的下限范围(DP-ERM)比以前大部分工作所考虑的2美元标准低。我们提供了简单的减少黑箱方法,可以将受限制案件中的较低限制范围概括为不受限制案件。对于(efsilon,delta)-DP,我们为受限制和不受限制的案件和任何1美元或1美元的几何法设定了较低限制/不受限制案件的下限范围($),为此对指纹编码采用了新的偏差平均值,即用美元作为数据集的大小,用美元作为维度。