Machine learning algorithms are increasingly used to inform critical decisions. There is a growing concern about bias, that algorithms may produce uneven outcomes for individuals in different demographic groups. In this work, we measure bias as the difference between mean prediction errors across groups. We show that even with unbiased input data, when a model is mis-specified: (1) population-level mean prediction error can still be negligible, but group-level mean prediction errors can be large; (2) such errors are not equal across groups; and (3) the difference between errors, i.e., bias, can take the worst-case realization. That is, when there are two groups of the same size, mean prediction errors for these two groups have the same magnitude but opposite signs. In closed form, we show such errors and bias are functions of the first and second moments of the joint distribution of features (for linear and probit regressions). We also conduct numerical experiments to show similar results in more general settings. Our work provides a first step for decoupling the impact of different causes of bias.
翻译:机器学习算法越来越多地被用于为关键决策提供信息。 人们日益关注偏差, 算法可能会为不同人口群体的个人产生不均衡的结果。 在这项工作中, 我们测量偏差是各群体之间平均预测错误之间的差别。 我们显示, 即使使用不偏颇的输入数据, 当模型被错误地指定时:(1) 人口一级平均预测错误仍然可以忽略不计, 但群体一级平均预测错误可能很大; (2) 这种错误在各群体之间是不平等的; (3) 错误之间的差别, 即偏差, 可以采取最坏的实现方式。 也就是说, 当有两组相同大小的人群时, 这两种群体的平均预测错误具有相同的规模, 但却是相反的信号。 我们以封闭的形式显示这种错误和偏差是特征共同分布的第一和第二时刻的函数( 线性回归和 Probit 回归 ) 。 我们还进行数字实验, 在更普遍的环境下显示相似的结果。 我们的工作为分解不同偏差原因的影响提供了第一步。