Learning continuously during all model lifetime is fundamental to deploy machine learning solutions robust to drifts in the data distribution. Advances in Continual Learning (CL) with recurrent neural networks could pave the way to a large number of applications where incoming data is non stationary, like natural language processing and robotics. However, the existing body of work on the topic is still fragmented, with approaches which are application-specific and whose assessment is based on heterogeneous learning protocols and datasets. In this paper, we organize the literature on CL for sequential data processing by providing a categorization of the contributions and a review of the benchmarks. We propose two new benchmarks for CL with sequential data based on existing datasets, whose characteristics resemble real-world applications. We also provide a broad empirical evaluation of CL and Recurrent Neural Networks in class-incremental scenario, by testing their ability to mitigate forgetting with a number of different strategies which are not specific to sequential data processing. Our results highlight the key role played by the sequence length and the importance of a clear specification of the CL scenario.


翻译:在所有模式生命周期内不断学习对于在数据分配过程中漂移时运用强有力的机器学习解决方案至关重要。 持续学习(CL)与经常性神经网络的进展可以为大量应用程序铺平道路,因为输入的数据是非静止的,例如自然语言处理和机器人;然而,关于这一专题的现有工作仍然支离破碎,采用具体应用的方法,其评估以不同学习协议和数据集为基础。在本文件中,我们通过对贡献进行分类和审查基准,为顺序数据处理整理关于CL的文献。我们为CL提出了两个基于现有数据集的相继数据的新基准,其特征类似于现实世界应用。我们还对CL和常规神经网络在等级环境假设中进行广泛的实证评价,测试它们是否有能力用与顺序数据处理无关的一些不同战略来减轻忘却。我们的成果突出了CL情景的顺序长度所起的关键作用和清晰说明的重要性。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
8+阅读 · 2020年10月7日
Arxiv
6+阅读 · 2018年12月10日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
8+阅读 · 2020年10月7日
Arxiv
6+阅读 · 2018年12月10日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Top
微信扫码咨询专知VIP会员