The robust Poisson method is becoming increasingly popular when estimating the association of exposures with a binary outcome. Unlike the logistic regression model, the robust Poisson method yields results that can be interpreted as risk or prevalence ratios. In addition, it does not suffer from frequent non-convergence problems like the most common implementations of maximum likelihood estimators of the log-binomial model. However, using a Poisson distribution to model a binary outcome may seem counterintuitive. Methodological papers have often presented this as a good approximation to the more natural binomial distribution. In this paper, we provide an alternative perspective to the robust Poisson method based on the semiparametric theory. This perspective highlights that the robust Poisson method does not require assuming a Poisson distribution for the outcome. In fact, the method only assumes a log-linear relationship between the risk/prevalence of the outcome and the explanatory variables. This assumption and consequences of its violation are discussed. Suggestions to reduce the risk of violating the modeling assumption are also provided. Additionally, we discuss and contrast the robust Poisson method with other approaches for estimating exposure risk or prevalence ratios.
翻译:稳健的 Poisson 方法在估计接触与二元结果的联系时越来越受欢迎。 与物流回归模型不同,稳健的 Poisson 方法产生的结果可以被解释为风险或流行率比率。 此外,它并不常见的非趋同问题,例如对日志-binomial 模型的最大可能性估计的最常见执行方法。然而,使用Poisson 分布法来模拟二元结果似乎似乎是反直觉的。 方法文件经常将此作为更自然的二元分布的良好近似。在本文件中,我们对基于半参数理论的稳健的 Poisson 方法提供了一种替代观点。这一观点突出表明,稳健的 Poisson 方法并不要求假设对结果采用Poisson 分布法。事实上,该方法仅假设结果的风险/流行率和解释变量之间的逻辑-线关系。讨论这一假设及其违反的后果。 也提出了降低违反模型假设风险的建议。此外,我们讨论并比较了稳健的Poisson 方法与估计风险或流行率的其他方法。