Intra retinal fluids or Cysts are one of the important symptoms of macular pathologies that are efficiently visualized in OCT images. Automatic segmentation of these abnormalities has been widely investigated in medical image processing studies. In this paper, we propose a new U-Net-based approach for Intra retinal cyst segmentation across different vendors that improves some of the challenges faced by previous deep-based techniques. The proposed method has two main steps: 1- prior information embedding and input data adjustment, and 2- IRC segmentation model. In the first step, we inject the information into the network in a way that overcomes some of the network limitations in receiving data and learning important contextual knowledge. And in the next step, we introduced a connection module between encoder and decoder parts of the standard U-Net architecture that transfers information more effectively from the encoder to the decoder part. Two public datasets namely OPTIMA and KERMANY were employed to evaluate the proposed method. Results showed that the proposed method is an efficient vendor-independent approach for IRC segmentation with mean Dice values of 0.78 and 0.81 on the OPTIMA and KERMANY datasets, respectively.
翻译:在OCT图像中有效视觉化的眼球病理学的重要症状之一,即视视视离心机图象显示的眼球病理学的重要症状之一。在医学图像处理研究中,对这些异常的自动分解已经进行了广泛调查。在本文件中,我们建议对不同供应商的内视网细胞分解采用基于U-Net的新方法,这改善了先前深层技术所面临的一些挑战。拟议方法有两个主要步骤:先用信息嵌入和输入数据调整,再用2个 IRC 分解模型。第一步,我们将信息注入网络,以克服在接收数据和学习重要背景知识方面的一些网络局限性。在下一步,我们采用了标准的U-Net结构的编码器和解码器部分之间的连接模块,将信息更有效地从编码器向解码器部分传输。使用了两个公共数据集,即 OMAIMA和KERMANY, 和 ALMAMAA 0. 8 和 DIMA 0. 8 和 DMANS 和 DMAMANS 0.8 和 DMAMAMAAL 0. 8 和D 0. 8和D 0.8 ALY 和DMAMAMAAL 0.8 和D 0.8和D 0.8和DMAMAAL 0.8和D 0.8和0.8 和DMAMAD AL 0.8和0.8和0.8