For many practical computer vision applications, the learned models usually have high performance on the datasets used for training but suffer from significant performance degradation when deployed in new environments, where there are usually style differences between the training images and the testing images. An effective domain generalizable model is expected to be able to learn feature representations that are both generalizable and discriminative. In this paper, we design a novel Style Normalization and Restitution module (SNR) to simultaneously ensure both high generalization and discrimination capability of the networks. In the SNR module, particularly, we filter out the style variations (e.g, illumination, color contrast) by performing Instance Normalization (IN) to obtain style normalized features, where the discrepancy among different samples and domains is reduced. However, such a process is task-ignorant and inevitably removes some task-relevant discriminative information, which could hurt the performance. To remedy this, we propose to distill task-relevant discriminative features from the residual (i.e, the difference between the original feature and the style normalized feature) and add them back to the network to ensure high discrimination. Moreover, for better disentanglement, we enforce a dual causality loss constraint in the restitution step to encourage the better separation of task-relevant and task-irrelevant features. We validate the effectiveness of our SNR on different computer vision tasks, including classification, semantic segmentation, and object detection. Experiments demonstrate that our SNR module is capable of improving the performance of networks for domain generalization (DG) and unsupervised domain adaptation (UDA) on many tasks. Code are available at https://github.com/microsoft/SNR.


翻译:对于许多实用的计算机视觉应用,学习的模型通常在培训所用的数据集上表现良好,但在新环境中部署时,在培训图像和测试图像之间通常有风格差异,在新环境中,学习的模型通常会发生显著的性能退化。预计一个有效的通用域模型能够学习既具有普遍性又具有歧视性的特征表征。在本文件中,我们设计了一个创新的“标准规范化和复原”模块(SNR),同时确保网络的高度普遍性和区别性能。特别是在SNR模块中,我们通过执行“常规规范化”(IN)来过滤风格变异(例如,光化、色色对比),以获得风格的标准化特点,从而获得不同样本和领域之间的差异。然而,这种过程是任务感光化,不可避免地会消除一些与任务相关的歧视信息,从而可能损害网络的性能。为了纠正这一点,我们建议从残余(即原特性和现有风格的软软性能特征之间的差异)中提取与任务相关的歧视特征,并将它们添加到网络,以确保高度歧视。此外,为了更好地改进对常规常规常规和领域差异的标准化,我们在执行过程中执行一种双级任务,让我们的恢复任务中的双级任务。

0
下载
关闭预览

相关内容

【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
30+阅读 · 2020年3月26日
【伯克利-滴滴出行】深度学习多源领域自适应综述论文
专知会员服务
53+阅读 · 2020年2月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年3月21日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年3月21日
Top
微信扫码咨询专知VIP会员