A dataset of street light images is presented. Our dataset consists of $\sim350\textrm{k}$ images, taken from 140 UMBRELLA nodes installed in the South Gloucestershire region in the UK. Each UMBRELLA node is installed on the pole of a lamppost and is equipped with a Raspberry Pi Camera Module v1 facing upwards towards the sky and lamppost light bulb. Each node collects an image at hourly intervals for 24h every day. The data collection spans for a period of six months. Each image taken is logged as a single entry in the dataset along with the Global Positioning System (GPS) coordinates of the lamppost. All entries in the dataset have been post-processed and labelled based on the operation of the lamppost, i.e., whether the lamppost is switched ON or OFF. The dataset can be used to train deep neural networks and generate pre-trained models providing feature representations for smart city CCTV applications, smart weather detection algorithms, or street infrastructure monitoring. The dataset can be found at \url{https://doi.org/10.5281/zenodo.6046758}.
翻译:展示了街道灯光图像的数据集。 我们的数据集由 $sim350\ textrrm{k} $sm350\ textrm{k} 构成。 我们的数据集由来自英国南格鲁斯特郡地区安装的140 UMBRELLA 节点组成, 每个UMBRELLA 节点安装在灯柱的柱子上, 并配有向天空和灯柱灯泡向上对面的 Raspberry Pi 相机模件 v1 。 每个节点每天24小时收集一张图像。 数据收集时间跨度为6个月。 每张图像都与灯柱的全球定位系统坐标一起作为数据集中的一个单项登录。 数据集中的所有条目都是根据灯柱的操作( 即, 灯柱是向上还是向灯柱向上移动的) 。 数据集可用于培训深神经网络, 并生成预先训练过的模型, 提供智能城市闭路系统应用、 智能天气探测算法或街道基础设施监测的特征演示。 数据设置可以在\url5284{ / 0. 5284} / 0. 0. org 。