The application of Algorithmic Recourse in decision-making is a promising field that offers practical solutions to reverse unfavorable decisions. However, the inability of these methods to consider potential dependencies among variables poses a significant challenge due to the assumption of feature independence. Recent advancements have incorporated knowledge of causal dependencies, thereby enhancing the quality of the recommended recourse actions. Despite these improvements, the inability to incorporate the temporal dimension remains a significant limitation of these approaches. This is particularly problematic as identifying and addressing the root causes of undesired outcomes requires understanding time-dependent relationships between variables. In this work, we motivate the need to integrate the temporal dimension into causal algorithmic recourse methods to enhance recommendations' plausibility and reliability. The experimental evaluation highlights the significance of the role of time in this field.
翻译:暂无翻译