Structure-aware Taylor (SAT) methods are a class of timestepping schemes designed for propagating linear hyperbolic solutions within a tent-shaped spacetime region. Tents are useful to design explicit time marching schemes on unstructured advancing fronts with built-in locally variable timestepping for arbitrary spatial and temporal discretization orders. The main result of this paper is that an $s$-stage SAT timestepping within a tent is weakly stable under the time step constraint $\Delta t \leq Ch^{1+1/s}$, where $\Delta t$ is the time step size and $h$ is the spatial mesh size. Improved stability properties are also presented for high order SAT time discretizations coupled with low order spatial polynomials. A numerical verification of the sharpness of proven estimates is also included.
翻译:具有结构意识的泰勒(Taylor)(SAT)方法是一种在帐篷形状的时段区域内传播线性双曲溶液的定时步骤计划,它有助于在无结构的前进前线设计明确的时间行进计划,在任意的空间和时间分解订单方面,当地内部的可变时间步骤是任意的空间和时间分解订单。本文的主要结果是,在时间步骤限制下,在帐篷内以美元计的阶段性SAT定时过程不稳定,$\Delta t\leqch ⁇ 1+1/s}美元(Delta t$)是时间步骤大小,以美元计为空间网形尺寸。对于高顺序的SAT时间分解,加上低序的空间多面性,也提出了更稳定的特性,还包括对经证实的估计数的精确性进行数字核查。