Autonomous navigation in highly populated areas remains a challenging task for robots because of the difficulty in guaranteeing safe interactions with pedestrians in unstructured situations. In this work, we present a crowd navigation control framework that delivers continuous obstacle avoidance and post-contact control evaluated on an autonomous personal mobility vehicle. We propose evaluation metrics for accounting efficiency, controller response and crowd interactions in natural crowds. We report the results of over 110 trials in different crowd types: sparse, flows, and mixed traffic, with low- (< 0.15 ppsm), mid- (< 0.65 ppsm), and high- (< 1 ppsm) pedestrian densities. We present comparative results between two low-level obstacle avoidance methods and a baseline of shared control. Results show a 10% drop in relative time to goal on the highest density tests, and no other efficiency metric decrease. Moreover, autonomous navigation showed to be comparable to shared-control navigation with a lower relative jerk and significantly higher fluency in commands indicating high compatibility with the crowd. We conclude that the reactive controller fulfils a necessary task of fast and continuous adaptation to crowd navigation, and it should be coupled with high-level planners for environmental and situational awareness.
翻译:高人口密集地区的自主导航仍然是机器人的一项艰巨任务,因为难以保证与行人在无结构情况下的安全互动。在这项工作中,我们提出了一个人群导航控制框架,对自主个人机动车辆进行持续的避免障碍和接触后控制评估。我们提出了会计效率、控制者反应和自然人群人群中人群互动的评价指标。我们报告了不同人群类别110次以上的试验结果:稀少、流动和混合交通,低( < 0.15 ppsm)、中( < 0.65 ppsm)和高( < 1 ppsm)行人密度。我们提出了两种低水平障碍避免方法和共享控制基线之间的比较结果。结果显示,最高密度测试相对目标的相对时间下降了10%,而其他效率指标没有降低。此外,自主导航显示与共享控制导航相近,相对而言,与人群高度兼容性的命令性明显提高。我们的结论是,反应控制者完成了快速和持续适应人群导航的必要任务,应该与高水平的环境和局势意识规划者相配合。