The success of deep reinforcement learning (DRL) is due to the power of learning a representation that is suitable for the underlying exploration and exploitation task. However, existing provable reinforcement learning algorithms with linear function approximation often assume the feature representation is known and fixed. In order to understand how representation learning can improve the efficiency of RL, we study representation learning for a class of low-rank Markov Decision Processes (MDPs) where the transition kernel can be represented in a bilinear form. We propose a provably efficient algorithm called ReLEX that can simultaneously learn the representation and perform exploration. We show that ReLEX always performs no worse than a state-of-the-art algorithm without representation learning, and will be strictly better in terms of sample efficiency if the function class of representations enjoys a certain mild "coverage'' property over the whole state-action space.


翻译:深层强化学习(DRL)之所以成功,是因为学会了适合基本勘探和开发任务的一种代表方式。然而,现有的具有线性功能近似的现有可变强化学习算法往往假定特征代表方式是已知的和固定的。为了了解代表性学习如何能提高RL的效率,我们为一组低级的Markov决策程序(MDPs)学习代表性学习方式,其中过渡核心可以以双线形式表示。我们建议一种称为ReLEX的、可同时学习代表性和进行探索的、可实现的高效算法。我们表明,RELEX的运行方式总是不比不进行代表性学习的、最先进的算法差,而且如果代表的功能类别在整个国家行动空间享有某种温和的“覆盖”财产,那么在抽样效率方面将非常好。

0
下载
关闭预览

相关内容

专知会员服务
27+阅读 · 2021年7月20日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月22日
Arxiv
0+阅读 · 2021年8月20日
VIP会员
相关VIP内容
专知会员服务
27+阅读 · 2021年7月20日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员