Actor-critic algorithms are widely used in reinforcement learning, but are challenging to mathematically analyze due to the online arrival of non-i.i.d. data samples. The distribution of the data samples dynamically changes as the model is updated, introducing a complex feedback loop between the data distribution and the reinforcement learning algorithm. We prove that, under a time rescaling, the online actor-critic algorithm with tabular parametrization converges to an ordinary differential equations (ODEs) as the number of updates becomes large. The proof first establishes the geometric ergodicity of the data samples under a fixed actor policy. Then, using a Poisson equation, we prove that the fluctuations of the data samples around a dynamic probability measure, which is a function of the evolving actor model, vanish as the number of updates become large. Once the ODE limit has been derived, we study its convergence properties using a two time-scale analysis which asymptotically de-couples the critic ODE from the actor ODE. The convergence of the critic to the solution of the Bellman equation and the actor to the optimal policy are proven. In addition, a convergence rate to this global minimum is also established. Our convergence analysis holds under specific choices for the learning rates and exploration rates in the actor-critic algorithm, which could provide guidance for the implementation of actor-critic algorithms in practice.


翻译:由于非i.id.d.d.数据样本的在线抵达,在数学上分析数据样本时具有挑战性。随着模型的更新,数据样本的分布动态变化,引入了数据分布和强化学习算法之间的复杂反馈环环。我们证明,在时间调整下,带有表表单超光度的在线行为者-批评算法随着更新数量增加而与普通差异方程式(ODE)相融合。证据首先确定数据样本在固定行为者政策下具有几何异性。然后,使用Poisri 方程式,我们证明数据样本围绕动态概率度的波动,这是不断演变的行为者模型的函数,随着更新数量的增加而消失。一旦得出ODE的极限,我们用两种时间尺度分析方法研究其趋同特性,这些时间尺度对评论者 ODE 和评论者 ODE 的数值将首先确定数据样本与Bellman 方程式的解决方案和行为者与最佳政策趋同率的趋同性。在进行精确的演算法分析时,也可以证明,在最起码的演算法中进行这种趋同率。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员