The rising demand for Active Safety systems in automotive applications stresses the need for a reliable short to mid-term trajectory prediction. Anticipating the unfolding path of road users, one can act to increase the overall safety. In this work, we propose to train artificial neural networks for movement understanding by predicting trajectories in their natural form, as a function of time. Predicting polynomial coefficients allows us to increased accuracy and improve generalisation.
翻译:在汽车应用中,对主动安全系统的需求不断增加,这突出表明需要可靠的短期到中期轨迹预测。 预测道路使用者正在发展的道路,人们可以采取行动提高总体安全性。 在这项工作中,我们提议通过预测自然轨道的自然形式和时间函数来培训人造神经网络以了解运动。 预测多元系数使我们能够提高准确性并改进普遍性。