Explaining node predictions in graph neural networks (GNNs) often boils down to finding graph substructures that preserve predictions. Finding these structures usually implies back-propagating through the GNN, bonding the complexity (e.g., number of layers) of the GNN to the cost of explaining it. This naturally begs the question: Can we break this bond by explaining a simpler surrogate GNN? To answer the question, we propose Distill n' Explain (DnX). First, DnX learns a surrogate GNN via knowledge distillation. Then, DnX extracts node or edge-level explanations by solving a simple convex program. We also propose FastDnX, a faster version of DnX that leverages the linear decomposition of our surrogate model. Experiments show that DnX and FastDnX often outperform state-of-the-art GNN explainers while being orders of magnitude faster. Additionally, we support our empirical findings with theoretical results linking the quality of the surrogate model (i.e., distillation error) to the faithfulness of explanations.
翻译:蒸馏和解释:使用简单的替代模型解释图神经网络
翻译后的摘要:
解释图神经网络(GNN)中节点预测通常归结为查找保留预测的图子结构。查找这些结构通常意味着通过GNN进行反向传播,将GNN的复杂性(例如,层数)与解释GNN的成本联系起来。这自然引出了一个问题:我们能否通过解释一个更简单的替代GNN来打破这种联系?为了回答这个问题,我们提出了Distill n' Explain(DnX)。首先,DnX通过知识蒸馏学习一个替代GNN。然后,DnX通过解决简单的凸优化程序提取节点或边级解释。我们还提出了FastDnX,它是DnX的速度更快的版本,利用了我们替代模型的线性分解。实验证明,DnX和FastDnX通常优于最先进的GNN解释器,同时速度快数个数量级。此外,我们通过将替代模型的质量(即蒸馏误差)与解释的忠实度联系起来的理论结果来支持我们的经验发现。