We study the problem of learning the structure of an optimal Bayesian network $D$ when additional constraints are posed on the DAG $D$ or on its moralized graph. More precisely, we consider the constraint that the moralized graph can be transformed to a graph from a sparse graph class $\Pi$ by at most $k$ vertex deletions. We show that for $\Pi$ being the graphs with maximum degree $1$, an optimal network can be computed in polynomial time when $k$ is constant, extending previous work that gave an algorithm with such a running time for $\Pi$ being the class of edgeless graphs [Korhonen & Parviainen, NIPS 2015]. We then show that further extensions or improvements are presumably impossible. For example, we show that when $\Pi$ is the set of graphs with maximum degree $2$ or when $\Pi$ is the set of graphs in which each component has size at most three, then learning an optimal network is NP-hard even if $k=0$. Finally, we show that learning an optimal network with at most $k$ edges in the moralized graph presumably has no $f(k)\cdot |I|^{\mathcal{O}(1)}$-time algorithm and that, in contrast, an optimal network with at most $k$ arcs in the DAG $D$ can be computed in $2^{\mathcal{O}(k)}\cdot |I|^{\mathcal{O}(1)}$ time where $|I|$ is the total input size.


翻译:当DAG $D$ 或其道德化图表上出现额外限制时,我们研究如何学习最佳巴伊西亚网络的结构问题。更准确地说,我们考虑道德化的图表可以从一个稀薄的图形类 $\Pi$ 最多用美元删除。我们显示,如果$\Pi$是最高水平为2美元的图表集,或者当$\Pi$是每个部分最多为3美元的图表集时,一个最佳网络可以在多元数字集中计算,然后扩大先前的工作,使一个运行时间为$\Pi$的算法成为无边图类 [Korhoonen & Parviainen, NIPS 2015]。我们然后表明进一步的扩展或改进大概是不可能的。例如,当$\Pi$是最高水平为2美元的图表集时,或者当美元是每个部分最多为3美元的图表集时,那么一个最佳的网络即使以美元=0美元计算,也是最硬的。最后,我们展示了在最高道德水平上与O的顶端学习一个最佳网络。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员