Many sequential decision-making systems leverage data collected using prior policies to propose a new policy. For critical applications, it is important that high-confidence guarantees on the new policy's behavior are provided before deployment, to ensure that the policy will behave as desired. Prior works have studied high-confidence off-policy estimation of the expected return, however, high-confidence off-policy estimation of the variance of returns can be equally critical for high-risk applications. In this paper, we tackle the previously open problem of estimating and bounding, with high confidence, the variance of returns from off-policy data
翻译:许多相继决策系统利用先前政策收集的数据来利用以往政策收集的数据来提出新政策。对于关键应用,重要的是在部署之前对新政策的行为提供高度信心保障,以确保政策按预期行事。先前的工作研究了对预期回报的高度信心非政策性估计,然而,对回报差异的高度信心非政策性估计对于高风险应用同样至关重要。在本文件中,我们以高度信心解决了以前尚未解决的问题,即估算和约束从非政策性数据得到的回报差异。