We study the parameterized problem of satisfying ``almost all'' constraints of a given formula $F$ over a fixed, finite Boolean constraint language $\Gamma$, with or without weights. More precisely, for each finite Boolean constraint language $\Gamma$, we consider the following two problems. In Min SAT$(\Gamma)$, the input is a formula $F$ over $\Gamma$ and an integer $k$, and the task is to find an assignment $\alpha \colon V(F) \to \{0,1\}$ that satisfies all but at most $k$ constraints of $F$, or determine that no such assignment exists. In Weighted Min SAT$(\Gamma$), the input additionally contains a weight function $w \colon F \to \mathbb{Z}_+$ and an integer $W$, and the task is to find an assignment $\alpha$ such that (1) $\alpha$ satisfies all but at most $k$ constraints of $F$, and (2) the total weight of the violated constraints is at most $W$. We give a complete dichotomy for the fixed-parameter tractability of these problems: We show that for every Boolean constraint language $\Gamma$, either Weighted Min SAT$(\Gamma)$ is FPT; or Weighted Min SAT$(\Gamma)$ is W[1]-hard but Min SAT$(\Gamma)$ is FPT; or Min SAT$(\Gamma)$ is W[1]-hard. This generalizes recent work of Kim et al. (SODA 2021) which did not consider weighted problems, and only considered languages $\Gamma$ that cannot express implications $(u \to v)$ (as is used to, e.g., model digraph cut problems). Our result generalizes and subsumes multiple previous results, including the FPT algorithms for Weighted Almost 2-SAT, weighted and unweighted $\ell$-Chain SAT, and Coupled Min-Cut, as well as weighted and directed versions of the latter. The main tool used in our algorithms is the recently developed method of directed flow-augmentation (Kim et al., STOC 2022).


翻译:我们研究一个参数化问题, 满足“ 几乎全部” 特定公式的制约, 以固定的、 有限的 Boole 限制语言的F$, 以美元计, 以重量计。 更准确地说, 对于每种有限的 Boole 限制语言, 美元 以美元计, 我们考虑以下两个问题。 在Min SAT$ (Gamma) 中, 输入的是一个公式, 美元超过$Gamma$ 和整数美元, 任务在于找到一个 美元, 以美元计, 以美元计, 以美元计, 以美元计, 以美元计, 以美元计, 以美元计。 以美元计, 以美元计, 以美元计。 以美元计, 以美元计, 以美元计, 以美元计, 以美元计, 以美元计。 以美元计, 以美元计, 以美元计, 以美元。

0
下载
关闭预览

相关内容

SAT是研究者关注命题可满足性问题的理论与应用的第一次年度会议。除了简单命题可满足性外,它还包括布尔优化(如MaxSAT和伪布尔(PB)约束)、量化布尔公式(QBF)、可满足性模理论(SMT)和约束规划(CP),用于与布尔级推理有明确联系的问题。官网链接:http://sat2019.tecnico.ulisboa.pt/
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月7日
Arxiv
0+阅读 · 2023年4月5日
Arxiv
0+阅读 · 2023年4月4日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员