Model compression via quantization and sparsity enhancement has gained an immense interest to enable the deployment of deep neural networks (DNNs) in resource-constrained edge environments. Although these techniques have shown promising results in reducing the energy, latency and memory requirements of the DNNs, their performance in non-ideal real-world settings (such as in the presence of hardware faults) is yet to be completely understood. In this paper, we investigate the impact of bit-flip and stuck-at faults on activation-sparse quantized DNNs (QDNNs). We show that a high level of activation sparsity comes at the cost of larger vulnerability to faults. For instance, activation-sparse QDNNs exhibit up to 17.32% lower accuracy than the standard QDNNs. We also establish that one of the major cause of the degraded accuracy is sharper minima in the loss landscape for activation-sparse QDNNs, which makes them more sensitive to perturbations in the weight values due to faults. Based on this observation, we propose the mitigation of the impact of faults by employing a sharpness-aware quantization (SAQ) training scheme. The activation-sparse and standard QDNNs trained with SAQ have up to 36.71% and 24.76% higher inference accuracy, respectively compared to their conventionally trained equivalents. Moreover, we show that SAQ-trained activation-sparse QDNNs show better accuracy in faulty settings than standard QDNNs trained conventionally. Thus the proposed technique can be instrumental in achieving sparsity-related energy/latency benefits without compromising on fault tolerance.


翻译:虽然这些技术在降低DNN的能量、悬浮和记忆要求方面显示出令人乐观的结果,但它们在非理想现实世界环境中的性能(如存在硬件故障)还有待完全理解。在本文中,我们调查了点翻转和卡登差错对激活-扭曲四分化 DNN(QDNNs)的影响。我们显示,在资源紧张的边缘环境中部署深层神经网络(DNNs)的高度启动性神经网络(DNNSs)的代价是,对减少DNNNNNNNPs的能量、延迟度和记忆要求而言,这些技术在减少DNDs的能量、延迟性能要求和记忆的要求方面都取得了令人乐观的结果。我们建议,在SA标准值的丧失中,Blicklipperlip和SASA标准值的扭曲性方面,可以更敏感地理解。我们建议,在对QQQQ-D值的精确度进行更高的评估后,QQQ-Q-QQ-Q-QQQ-RE real-ass redustrain a redustrual ass redustrual aviewation suplation suplation s

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年6月14日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员