We present a motion segmentation guided convolutional neural network (CNN) approach for high dynamic range (HDR) image deghosting. First, we segment the moving regions in the input sequence using a CNN. Then, we merge static and moving regions separately with different fusion networks and combine fused features to generate the final ghost-free HDR image. Our motion segmentation guided HDR fusion approach offers significant advantages over existing HDR deghosting methods. First, by segmenting the input sequence into static and moving regions, our proposed approach learns effective fusion rules for various challenging saturation and motion types. Second, we introduce a novel memory network that accumulates the necessary features required to generate plausible details in the saturated regions. The proposed method outperforms nine existing state-of-the-art methods on two publicly available datasets and generates visually pleasing ghost-free HDR results. We also present a large-scale motion segmentation dataset of 3683 varying exposure images to benefit the research community.
翻译:我们为高动态范围(HDR)图像失明展示了动态分解引导神经神经网络(CNN)方法。首先,我们用有线电视新闻网(CNN)在输入序列中将移动区域分解。然后,我们将静态和移动区域与不同的聚合网络分别合并,并结合集成功能来生成最终的无鬼《人类发展报告》图像。我们的运动分解指导《人类发展报告》集成方法比现有的《人类发展报告》分解方法有很大的优势。首先,通过将输入序列分解成静态和移动区域,我们拟议的方法为各种具有挑战性的饱和和和运动类型学习了有效的聚合规则。第二,我们引入了新颖的记忆网络,积累了在饱和区域产生合理细节所需的必要特征。拟议方法在两个公开的数据集上优于现有的九种最新方法,并生成了视觉上令人愉快的无鬼人类发展报告结果。我们还介绍了一个大型运动分解数据集,有3683种不同的接触图像,以惠及研究界。