Understanding social interactions from first-person views is crucial for many applications, ranging from assistive robotics to AR/VR. A first step for reasoning about interactions is to understand human pose and shape. However, research in this area is currently hindered by the lack of data. Existing datasets are limited in terms of either size, annotations, ground-truth capture modalities or the diversity of interactions. We address this shortcoming by proposing EgoBody, a novel large-scale dataset for social interactions in complex 3D scenes. We employ Microsoft HoloLens2 headsets to record rich egocentric data streams (including RGB, depth, eye gaze, head and hand tracking). To obtain accurate 3D ground-truth, we calibrate the headset with a multi-Kinect rig and fit expressive SMPL-X body meshes to multi-view RGB-D frames, reconstructing 3D human poses and shapes relative to the scene. We collect 68 sequences, spanning diverse sociological interaction categories, and propose the first benchmark for 3D full-body pose and shape estimation from egocentric views. Our dataset and code will be available for research at https://sanweiliti.github.io/egobody/egobody.html.


翻译:从第一人的观点来理解社会互动对于许多应用至关重要,从辅助机器人到AR/VR。关于互动的推理的第一步是了解人类的形态和形状。然而,目前这方面的研究受到数据缺乏的阻碍。现有的数据集在大小、说明、地面真相捕获模式或互动多样性方面都有限。我们通过提议EgoBody来解决这一缺陷。EgoBody是复杂的三维场景中社会互动的新型大型数据集。我们使用微软 HoloLens2头盔记录丰富的自我中心数据流(包括RGB、深度、眼视、头和手跟踪)。为了获得准确的 3D 地面图例,我们用多光谱的钻机校准头板,并将SMPL-X体模模模缩到多视图的 RGB-D 框架,重建3D人形和形状。我们收集了68个序列,跨越了多种社会互动类别,并提出了3D全体的首个基准,从自我中心观点来估算。我们的数据设置和代码将可在 httpsscob/scobe上进行研究。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
深度学习、机器学习图像/人脸/字幕/自动驾驶数据集(Dataset)汇总
数据挖掘入门与实战
3+阅读 · 2018年1月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
0+阅读 · 2022年2月14日
VIP会员
相关资讯
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
深度学习、机器学习图像/人脸/字幕/自动驾驶数据集(Dataset)汇总
数据挖掘入门与实战
3+阅读 · 2018年1月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员