We will introduce Euler-Maruyama approximations given by an orthogonal system in $L^{2}[0,1]$ for high dimensional SDEs, which could be finite dimensional approximations of SPDEs. In general, the higher the dimension is, the more one needs to generate uniform random numbers at every time step in numerical simulation. The schemes proposed in this paper, in contrast, can deal with this problem by generating very few uniform random numbers at every time step. The schemes save time in the simulation of very high dimensional SDEs. In particular, we conclude that an Euler-Maruyama approximation based on the Walsh system is efficient in high dimensions.


翻译:我们将引入由正方形系统以$L ⁇ 2}[0,1]美元提供的高维SDE近似值。 高维SDE可能是SPDE的有限维近近似值。 一般来说, 维度越高, 就越需要在数字模拟的每个阶段生成统一的随机数字。 相反, 本文中提议的计划可以通过在每一个步骤生成非常少的统一随机数字来解决这个问题。 计划节省了非常高维SDE模拟的时间。 特别是, 我们得出结论, 基于 Walsh 系统的Euler- Maruyama近近似值在高维度上是有效的。

0
下载
关闭预览

相关内容

【WWW2021】用于常识知识提取的高级语义
专知会员服务
11+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年5月25日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员