We consider the federated submodel learning (FSL) problem and propose an approach where clients are able to update the central model information theoretically privately. Our approach is based on private set union (PSU), which is further based on multi-message symmetric private information retrieval (MM-SPIR). The server has two non-colluding databases which keep the model in a replicated manner. With our scheme, the server does not get to learn anything further than the subset of submodels updated by the clients: the server does not get to know which client updated which submodel(s), or anything about the local client data. In comparison to the state-of-the-art private FSL schemes of Jia-Jafar and Vithana-Ulukus, our scheme does not require noisy storage of the model at the databases; and in comparison to the secure aggregation scheme of Zhao-Sun, our scheme does not require pre-distribution of client-side common randomness, instead, our scheme creates the required client-side common randomness via random SPIR and one-time pads. The protocol starts with a common randomness generation (CRG) phase where the two databases establish common randomness at the client-side using RSPIR and one-time pads (this phase is called FSL-CRG). Next, the clients utilize the established client-side common randomness to have the server determine privately the union of indices of submodels to be updated collectively by the clients (this phase is called FSL-PSU). Then, the two databases broadcast the current versions of the submodels in the set union to clients. The clients update the submodels based on their local training data. Finally, the clients use a variation of FSL-PSU to write the updates back to the databases privately (this phase is called FSL-write). Our proposed private FSL scheme is robust against client drop-outs, client late-arrivals, and database drop-outs.


翻译:我们考虑了Federate 子模型学习(FSL) 问题, 并提出了客户可以在理论上私下更新中央模型信息的方法。 我们的方法是以私人设定的联盟(PSU)为基础, 更进一步基于多消息对称私人信息检索( MM-SPIR ) 。 服务器有两个非循环数据库, 以复制的方式保存模型。 与我们的计划相比, 服务器不会学到任何比客户更新的子模型子模型更进一步的东西: 服务器无法知道哪个客户更新了哪个子模型, 或者任何关于本地客户的数据。 我们的方法基于私人设定的联盟( PSUSU) 。 与目前最先进的私人FSL 计划( Jia- Jafar 和 Vithana- Ulukus ) 计划相比, 我们的计划不需要在数据库中杂乱存储模型; 我们的计划不需要事先分配客户端的普通版本, 相反, 我们的FS-L 计划创建的客户端数据库通过随机 SIR 和一次性平台的客户端的客户端数据更新。 协议从普通客户端开始, 在普通客户端的 RRS 版本中, 在普通客户端的版本中, 在普通客户端数据库中, R- R- R- R- R- serl 更新的版本中, 在普通客户端的版本中, 更新的版本中, 在普通客户端的版本中, 更新的版本中, 更新的版本数据库中, 在普通客户端数据库中, 在普通的版本中, 更新的版本数据库中, 在普通客户端数据库中, 正在更新的版本中, 在普通客户端数据库中, 在普通版本中, 更新的版本中, 更新的版本中, 更新。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员