The decentralized and privacy-preserving nature of federated learning (FL) makes it vulnerable to backdoor attacks aiming to manipulate the behavior of the resulting model on specific adversary-chosen inputs. However, most existing defenses based on statistical differences take effect only against specific attacks, especially when the malicious gradients are similar to benign ones or the data are highly non-independent and identically distributed (non-IID). In this paper, we revisit the distance-based defense methods and discover that i) Euclidean distance becomes meaningless in high dimensions and ii) malicious gradients with diverse characteristics cannot be identified by a single metric. To this end, we present a simple yet effective defense strategy with multi-metrics and dynamic weighting to identify backdoors adaptively. Furthermore, our novel defense has no reliance on predefined assumptions over attack settings or data distributions and little impact on benign performance. To evaluate the effectiveness of our approach, we conduct comprehensive experiments on different datasets under various attack settings, where our method achieves the best defensive performance. For instance, we achieve the lowest backdoor accuracy of 3.06% under the difficult Edge-case PGD, showing significant superiority over previous defenses. The results also demonstrate that our method can be well-adapted to a wide range of non-IID degrees without sacrificing the benign performance.
翻译:联邦学习(FL)的分散性和隐私保护性质使得它容易受到幕后攻击,目的是操纵由此产生的特定对手选择的投入模式的行为。然而,基于统计差异的大多数现有防御只对特定攻击产生效果,特别是当恶意梯度与良梯度相似,或数据高度不独立且分布相同(非IID)。在本文中,我们重新审视远程防御方法,发现(i) 远距在高维度上变得毫无意义,二) 具有不同特点的恶意梯度无法通过单一的度量来识别。为此,我们提出了一个简单而有效的防御战略,具有多度和动态加权,以适应性地识别后门。此外,我们的新防御并不依赖于对攻击环境或数据分布的预先假设,对良好性能的影响很小。为了评估我们的方法的有效性,我们在不同攻击环境下对不同的数据集进行了全面实验,我们的方法达到了最佳的防御性能。例如,我们在困难的Edg-case-PGD中,我们实现了3.06 %的后门精确度最低的后门精确度。此外,我们的新防御也展示了我们之前的不甚甚高的等级。</s>