This article explores subspace clustering algorithms using CUR decompositions, and examines the effect of various hyperparameters in these algorithms on clustering performance on two real-world benchmark datasets, the Hopkins155 motion segmentation dataset and the Yale face dataset. Extensive experiments are done for a variety of sampling methods and oversampling parameters for these datasets, and some guidelines for parameter choices are given for practical applications.
翻译:本文探讨使用CUR分解法的子空间群集算法,并研究这些算法中各种高参数对两个真实世界基准数据集(Hopkins155运动分解数据集和耶鲁脸数据集)的组合性能的影响,对这些数据集的各种取样方法和过度抽样参数进行了广泛的实验,并为实际应用提供了一些参数选择指南。