We study the robust communication complexity of maximum matching. Edges of an arbitrary $n$-vertex graph $G$ are randomly partitioned between Alice and Bob independently and uniformly. Alice has to send a single message to Bob such that Bob can find an (approximate) maximum matching of the whole graph $G$. We specifically study the best approximation ratio achievable via protocols where Alice communicates only $\widetilde{O}(n)$ bits to Bob. There has been a growing interest on the robust communication model due to its connections to the random-order streaming model. An algorithm of Assadi and Behnezhad [ICALP'21] implies a $(2/3+\epsilon_0 \sim .667)$-approximation for a small constant $0 < \epsilon_0 < 10^{-18}$, which remains the best-known approximation for general graphs. For bipartite graphs, Assadi and Behnezhad [Random'21] improved the approximation to .716 albeit with a computationally inefficient (i.e., exponential time) protocol. In this paper, we study a natural and efficient protocol implied by a random-order streaming algorithm of Bernstein [ICALP'20] which is based on edge-degree constrained subgraphs (EDCS) [Bernstein and Stein; ICALP'15]. The result of Bernstein immediately implies that this protocol achieves an (almost) $(2/3 \sim .666)$-approximation in the robust communication model. We present a new analysis, proving that it achieves a much better (almost) $(5/6 \sim .833)$-approximation. This significantly improves previous approximations both for general and bipartite graphs. We also prove that our analysis of Bernstein's protocol is tight.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月15日
Arxiv
0+阅读 · 2023年6月13日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员