Purpose: In this paper, we present a novel approach to the automatic evaluation of open surgery skills using depth cameras. This work is intended to show that depth cameras achieve similar results to RGB cameras, which is the common method in the automatic evaluation of open surgery skills. Moreover, depth cameras offer advantages such as robustness to lighting variations, camera positioning, simplified data compression, and enhanced privacy, making them a promising alternative to RGB cameras. Methods: Experts and novice surgeons completed two simulators of open suturing. We focused on hand and tool detection, and action segmentation in suturing procedures. YOLOv8 was used for tool detection in RGB and depth videos. Furthermore, UVAST and MSTCN++ were used for action segmentation. Our study includes the collection and annotation of a dataset recorded with Azure Kinect. Results: We demonstrated that using depth cameras in object detection and action segmentation achieves comparable results to RGB cameras. Furthermore, we analyzed 3D hand path length, revealing significant differences between experts and novice surgeons, emphasizing the potential of depth cameras in capturing surgical skills. We also investigated the influence of camera angles on measurement accuracy, highlighting the advantages of 3D cameras in providing a more accurate representation of hand movements. Conclusion: Our research contributes to advancing the field of surgical skill assessment by leveraging depth cameras for more reliable and privacy evaluations. The findings suggest that depth cameras can be valuable in assessing surgical skills and provide a foundation for future research in this area.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Kinect for Xbox 360,简称 Kinect,是由微软开发,应用于 Xbox 360 主机的周边设备。它让玩家不需要手持或踩踏控制器,而是使用语音指令或手势来操作 Xbox 360 的系统界面。它也能捕捉玩家全身上下的动作,用身体来进行游戏,带给玩家“免控制器的游戏与娱乐体验”。 2009 年 6 月 1 日微软于 E3 游戏展中公布名为“Project Natal”(诞生计划)的感应器,它能够捕捉使用者的肢体动作,或是进行脸部辨识。感应器也内建麦克风,可以用来识别语音指令。此感应器兼容于所有 Xbox 360 主机,玩家只需新购此感应器就可直接使用。 2010 年的 E3 电玩展,微软宣布 Project Natal 的正式名称为“Kinect”,并预计在 2010 年 11 月 4 日于美国上市,建议售价 149 美金。台湾则在2010 年 11 月 20 日上市。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员