We analyze loci of triangle centers over variants of two-well known triangle porisms: the bicentric and confocal families. Specifically, we evoke the general version of Poncelet's closure theorem whereby individual sides can be made tangent to separate in-pencil caustics. We show that despite the more complicated dynamic geometry, the locus of certain triangle centers and associated points remain conics and/or circles.
翻译:我们分析三角中心相对于已知的双形三角圆柱形的变体:双心和组合家庭。 具体地说,我们引用了庞斯莱封闭理论的一般版本,通过该理论,可以使个别方切切换到分离锥形肿瘤。 我们显示,尽管有更复杂的动态几何,但某些三角中心和相关点的地点仍然是锥形和/或圆形。