Language Models (LMs) memorize a vast amount of factual knowledge, exhibiting strong performance across diverse tasks and domains. However, it has been observed that the performance diminishes when dealing with less-popular or low-frequency concepts and entities, for example in domain specific applications. The two prominent approaches to enhance the performance of LMs on low-frequent topics are: Retrieval Augmented Generation (RAG) and fine-tuning (FT) over synthetic data. This paper explores and evaluates the impact of RAG and FT on customizing LMs in handling low-frequency entities on question answering tasks. We conduct extensive experiments on twelve LMs of varying size and type and different fine tuning, data augmentation, and retrieval models. Our findings indicate that while FT boosts the performance across entities of varying popularity, RAG surpasses FT by a large margin particularly for least popular factual knowledge. Additionally, the success of both RAG and FT approaches is amplified by improving retrieval and data augmentation techniques. Fine tuning, while beneficial for small LMs, requires extensive resources. To address this issue, we propose the new Stimulus RAG approach that surpasses the effectiveness of fine tuning based approaches, thereby eliminating the need for the costly data augmentation and fine tuning step for enriching LMs with less popular factual knowledge.
翻译:暂无翻译