Bayesian decision analysis is a useful method for risk management decisions, but is limited in its ability to consider severe uncertainty in knowledge, and value ambiguity in management objectives. We study the use of robust Bayesian decision analysis to handle problems where one or both of these issues arise. The robust Bayesian approach models severe uncertainty through bounds on probability distributions, and value ambiguity through bounds on utility functions. To incorporate data, standard Bayesian updating is applied on the entire set of distributions. To elicit our expert's utility representing the value of different management objectives, we use a modified version of the swing weighting procedure that can cope with severe value ambiguity. We demonstrate these methods on an environmental management problem to eradicate an alien invasive marmorkrebs recently discovered in Sweden, which needed a rapid response despite substantial knowledge gaps if the species was still present (i.e. severe uncertainty) and the need for difficult tradeoffs and competing interests (i.e. value ambiguity). We identify that the decision alternatives to drain the system and remove individuals in combination with dredging and sieving with or without a degradable biocide, or increasing pH, are consistently bad under the entire range of probability and utility bounds. This case study shows how robust Bayesian decision analysis provides a transparent methodology for integrating information in risk management problems where little data are available and/or where the tradeoffs ambiguous.


翻译:Bayesian决定分析是风险管理决策的有用方法,但这种分析在考虑知识的严重不确定性和管理目标的价值模糊性方面能力有限。我们研究如何使用强有力的Bayesian决定分析方法来处理出现这些问题的一个或多个问题。强有力的Bayesian方法模型通过概率分布的界限和效用功能的界限的数值模糊性而产生严重的不确定性。为了纳入数据,标准的Bayesian更新标准适用于整个分布系列(即价值模糊性)。为了获得专家代表不同管理目标价值的效用,我们使用经修改的回旋权重程序版本,以对付严重价值模糊性。我们用这些方法来说明一个环境管理问题,以消除最近在瑞典发现的一个外来入侵的marmorkreb。尽管物种仍然存在重大知识差距(即严重不确定性),而且需要艰难的权衡和相互竞争的利益(即价值模糊性),但需要迅速作出反应。我们发现,为了排挤系统并清除个人,我们采用了能够应付严重价值模糊性的调整的周转权重程序。我们用这些方法来说明如何解决最近在瑞典发现一个环境管理问题,而这种方法需要迅速作出反应,尽管如果物种仍然存在重大的知识空白性,那么,那么,那么,那么,那么,在风险性分析中,那么,那么,在风险性分析中,那么,那么,那么,那么,在风险性分析中,这种分析会如何透明性分析是没有多少式的概率性的方法就具有多少。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2021年4月30日
Testing and estimation of clustered signals
Arxiv
0+阅读 · 2021年4月29日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员