Quantifying errors and losses due to the use of Floating-Point (FP) calculations in industrial scientific computing codes is an important part of the Verification, Validation and Uncertainty Quantification (VVUQ) process. Stochastic Arithmetic is one way to model and estimate FP losses of accuracy, which scales well to large, industrial codes. It exists in different flavors, such as CESTAC or MCA, implemented in various tools such as CADNA, Verificarlo or Verrou. These methodologies and tools are based on the idea that FP losses of accuracy can be modeled via randomness. Therefore, they share the same need to perform a statistical analysis of programs results in order to estimate the significance of the results. In this paper, we propose a framework to perform a solid statistical analysis of Stochastic Arithmetic. This framework unifies all existing definitions of the number of significant digits (CESTAC and MCA), and also proposes a new quantity of interest: the number of digits contributing to the accuracy of the results. Sound confidence intervals are provided for all estimators, both in the case of normally distributed results, and in the general case. The use of this framework is demonstrated by two case studies of large, industrial codes: Europlexus and code_aster.
翻译:由于在工业科学计算编码中使用浮点计算法(FP)而造成误差和损失的量化错误和损失是核查、验证和不确定量化(VVUQ)过程的一个重要部分。Stochatic Arithmatic是模型和估计FP准确性损失的一种方法,这种精确性损失的尺度大小不小于大型工业编码。它存在于不同口味中,如CADNA、Verifarlo或Verrou等各种工具中实施的CESTAC或MCA等。这些方法和工具基于以下想法:FP的准确性损失可以通过随机制成模型。因此,它们共同需要对程序结果进行统计分析,以便估计结果的重要性。在本文件中,我们提出了一个框架,对Stochatic Airtic Aricatic进行可靠的统计分析。这个框架统一了所有关于重要数字数数的现有定义(CESTAC和MCA),并提出了新的兴趣:数字数数有助于结果的准确性。它们同样需要通过随机性来对结果进行统计分析,因此,它们也共同需要对方案结果进行统计分析。在本案例中通常采用两种格式分析。