The paper proposes a Dynamic ResBlock Generative Adversarial Network (DRB-GAN) for artistic style transfer. The style code is modeled as the shared parameters for Dynamic ResBlocks connecting both the style encoding network and the style transfer network. In the style encoding network, a style class-aware attention mechanism is used to attend the style feature representation for generating the style codes. In the style transfer network, multiple Dynamic ResBlocks are designed to integrate the style code and the extracted CNN semantic feature and then feed into the spatial window Layer-Instance Normalization (SW-LIN) decoder, which enables high-quality synthetic images with artistic style transfer. Moreover, the style collection conditional discriminator is designed to equip our DRB-GAN model with abilities for both arbitrary style transfer and collection style transfer during the training stage. No matter for arbitrary style transfer or collection style transfer, extensive experiments strongly demonstrate that our proposed DRB-GAN outperforms state-of-the-art methods and exhibits its superior performance in terms of visual quality and efficiency. Our source code is available at \color{magenta}{\url{https://github.com/xuwenju123/DRB-GAN}}.


翻译:本文为艺术风格的传输提出了一个动态 ResBlock General Adversarial 网络( DRB-GAN) 。 样式代码建模为动态 ResBlock 的共享参数, 连接样式编码网络和样式传输网络。 在样式编码网络中, 使用风格类觉注意机制, 以关注生成样式代码的样式特征。 在样式传输网络中, 多个动态 ResBlock 设计了多个动态 ResBlock, 以整合样式代码和提取的CNN 语义特征, 然后输入空间窗口层- Instance 正常化( SW- LIN) 解码, 使高品质合成图像与艺术风格传输相连接。 此外, 风格收集有条件的区分器的设计旨在为我们的 DRB- GAN 模式提供在培训阶段任意样式传输和收集样式传输的能力。 没有任意样式传输或收集样式传输的问题, 广泛的实验有力地证明, 我们提议的 DRB- GANAN- GAN 超越了状态- 艺术的方法, 并以视觉质量和效率展示其优异性性表现。 我们的源代码可以在\ { am_Bx_urruslus/ gruxmbrusl{/ grux_ruslusrusrus@s.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关VIP内容
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员