Autism, also known as Autism Spectrum Disorder (or ASD), is a neurological disorder. Its main symptoms include difficulty in (verbal and/or non-verbal) communication, and rigid/repetitive behavior. These symptoms are often indistinguishable from a normal (control) individual, due to which this disorder remains undiagnosed in early childhood leading to delayed treatment. Since the learning curve is steep during the initial age, an early diagnosis of autism could allow to take adequate interventions at the right time, which might positively affect the growth of an autistic child. Further, the traditional methods of autism diagnosis require multiple visits to a specialized psychiatrist, however this process can be time-consuming. In this paper, we present a learning based approach to automate autism diagnosis using simple and small action video clips of subjects. This task is particularly challenging because the amount of annotated data available is small, and the variations among samples from the two categories (ASD and control) are generally indistinguishable. This is also evident from poor performance of a binary classifier learned using the cross-entropy loss on top of a baseline encoder. To address this, we adopt contrastive feature learning in both self supervised and supervised learning frameworks, and show that these can lead to a significant increase in the prediction accuracy of a binary classifier on this task. We further validate this by conducting thorough experimental analyses under different set-ups on two publicly available datasets.


翻译:自闭症,也称为自闭症谱障碍(Autism Spectrum Astics),是一种神经系统紊乱,其主要症状包括难以(口头和/或非口头)沟通,以及僵硬/重复行为。这些症状往往与正常(控制)个人无法区分,因此这种自闭症在幼儿期仍然无法诊断导致治疗延误。由于在初始年龄阶段学习曲线过低,早期自闭症诊断可以允许在正确的时间采取适当干预措施,这可能积极影响自闭症儿童的成长。此外,传统的自闭症诊断方法需要多次访问专业精神病学家,但这一过程可能很费时。在本文中,我们介绍了一种基于学习自闭症诊断的基于方法,使用简单和小的动作视频剪辑进行自闭诊断,导致治疗延迟。由于现有的附加说明数据数量很少,而且两类(自闭症和控制)的样本一般是无法区分的。这还表现在两种自闭症儿童成长过程中的二进式分类分析表现不佳,在使用跨级分析中学会了双进式的公开分析方法,在这种先行的自闭的自闭式分析中学习了这种自闭的自闭的自闭式分析,通过我们的自闭式分析,在对底的自我解的自我解的自我解的自我解的自我解分析中,从闭断断图图图图图图表表表表表表表表表表表表表表表表表表表表表表表表显示了重要的大量进行了重要的分析。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
AUC-based Selective Classification
Arxiv
0+阅读 · 2022年10月19日
Arxiv
14+阅读 · 2022年8月25日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员