In this paper, we consider distributed optimization problems where $n$ agents, each possessing a local cost function, collaboratively minimize the average of the local cost functions over a connected network. To solve the problem, we propose a distributed random reshuffling (D-RR) algorithm that invokes the random reshuffling (RR) update in each agent. We show that D-RR inherits favorable characteristics of RR for both smooth strongly convex and smooth nonconvex objective functions. In particular, for smooth strongly convex objective functions, D-RR achieves $\mathcal{O}(1/T^2)$ rate of convergence (where $T$ counts epoch number) in terms of the squared distance between the iterate and the global minimizer. When the objective function is assumed to be smooth nonconvex and has Lipschitz continuous component functions, we show that D-RR drives the squared norm of gradient to $0$ at a rate of $\mathcal{O}(1/T^{2/3})$. These convergence results match those of centralized RR (up to constant factors) and outperform the distributed stochastic gradient descent (DSGD) algorithm if we run a relatively large number of epochs. Finally, we conduct a set of numerical experiments to illustrate the efficiency of the proposed D-RR method on both strongly convex and nonconvex distributed optimization problems.
翻译:在本文中,我们考虑分配优化问题,即美元代理商,每个代理商均拥有当地成本功能,协作将连接网络中当地成本功能的平均值最小化。为了解决问题,我们建议采用分散随机调整(D-RR)算法,在每个代理商中援引随机调整(RR)更新。我们表明,D-RR将RR的有利特性用于顺畅的强电流和顺通的非对流目标功能。特别是,对于平稳的对流目标功能,D-RR将达到$\mathcal{O}(1/T2/2)美元汇合率($T=2)美元(美元计数),以迭代与全球最小化的平方距离计算(D-R) 。当目标功能被假定为平滑的不相交配,而Lipschitz连续的功能则由Lipschitz将梯段的正方位标准提高到0.0美元,以拟议的 $mathcal{O}(1/TQ2/3}。这些趋同结果与中央不集中的RRRR(最高为美元计数数数数计算),如果我们最终的递化方法被稳定地分解为稳定的,那么,则会变压的递制成一个硬的递增的递制的递制的递制的递制的递制的递制的递制成。