A distributed directory is an overlay data structure on a graph $G$ that helps to access a shared token $t$. The directory supports three operations: publish, to announce the token, lookup, to read the contents of the token, and move, to get exclusive update access to the token. The directory is built upon a hierarchical partition of the graph using either weak or strong clusters. The main mechanism is the maintenance of a directory path that starts at the root node in the hierarchy and points to the current owner of the token. In the literature, there are known directory algorithms based on hierarchical graph structures, but none of them have considered failures. Given a hierarchical partition, we consider the impact of $f$ edge failures on the functionality and performance of the distributed directory. The edge failures may result in the splitting of clusters into up to $f+1$ connected components. To recover the hierarchical partition after failures, we maintain spanning trees in the clusters and their connected components. If $G$ remains connected, we show that the directory path length is dilated by only a factor $f$. We also show that the performance of the directory operations is affected in the worst case by a factor $f$ with respect to the message complexity.
翻译:分布式目录是图形 $G$ 上的一个重叠数据结构, 有助于访问共享的象征性 $t$ 。 该目录支持三个操作 : 发布、 宣布象征性、 查看、 阅读象征性内容, 移动, 获取对象征性的独家更新访问 。 该目录建在图形的等级分区上, 使用弱或强的组群。 主要机制是维护从等级的根节点开始的目录路径, 并指向当前标记的主人 。 在文献中, 有已知的目录算法, 以等级图结构为基础, 但没有一种算法考虑过失败 。 在等级分区中, 我们考虑到 $f 的边错对分布式目录的功能和性能的影响 。 边错可能会导致将组分解成最多为$f+1美元的连接组件 。 为了在失败后恢复等级分区, 我们保留在组群中的树及其连接部分。 如果 $G$ 仍然连接, 我们显示目录路径长度仅被一个因 $f 倍而缩小 。 我们还显示目录操作的进度在最坏的情况下会影响到 $ 。